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Abstract

In this paper, we consider the joint regression and classification in Alzheimer’s disease diagnosis 

and propose a novel multi-relation regularization method that exploits the relational information 

inherent in the observations and then combines it with an ℓ2,1-norm within a least square regression 

framework for feature selection. Specifically, we use three kinds of relationships: feature-feature 

relation, response-response relation, and sample-sample relation. By imposing these three 

relational characteristics along with the ℓ2,1-norm on the weight coefficients, we formulate a new 

objective function. After feature selection based on the optimal weight coefficients, we train two 

support vector regression models to predict the clinical scores of Alzheimer’s Disease Assessment 

Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE), 

respectively, and a support vector classification model to identify the clinical label. We conducted 

clinical score prediction and disease status identification jointly on the Alzheimer’s Disease 

Neuroimaging Initiative dataset. The experimental results showed that the proposed regularization 

method outperforms the state-of-the-art methods, in the metrics of correlation coefficient and root 

mean squared error in regression and classification accuracy, sensitivity, specificity, and area under 

the receiver operating characteristic curve in classification.
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1 Introduction

For the computer-aided Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI) 

diagnosis, the available sample size is usually small, but the feature dimension is high. For 

example, the sample size used in [7,21] was less than one hundred, while the feature 

dimension (including both Magnetic Resonance Imaging (MRI) and Positron Emission 

Tomography (PET) features) was hundreds or even thousands. The small sample size makes 

it difficult to build an effective model, and the high dimensionality of data leads to an 

overfitting problem. To this end, researchers mostly predefined the disease-related features 

and used such low-dimensional features in clinical label identification or clinical score 

prediction.
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In the meantime, recent studies have shown that the feature selection helps overcome both 

problems of high dimensionality and small sample size, by removing uninformative features 

[14,16,13,19,20,18]. Moreover, among various feature selection techniques, manifold 

learning has been successfully used in either regression or classification [9,13,12,17]. For 

example, Cho et al. adopted a manifold harmonic transformation method on the cortical 

thickness data and achieved a sensitivity of 63% and a specificity of 76% on the dataset with 

72 MCI Converters (MCI-C) and 131 MCI Non-Converters (MCI-NC) [3]. While most of 

the previous studies focused on identifying brain disease and estimating clinical scores 

separately [4], there have been also efforts to select joint features that could be used for both 

tasks simultaneously. For example, Zhang and Shen proposed a multi-task sparse feature 

selection method for joint disease status identification and clinical scores prediction, and 

showed that such combination can achieve better performance than performing them 

separately [15,21].

In line with Zhang and Shen’s work, in this paper, we consider the prediction of both clinical 

scores and disease status jointly in a unified framework, as in [7,9]. However, unlike the 

previous manifold-based feature selection methods that considered only the manifold of the 

samples, but not manifold of either the features or the response variables, we propose a 

novel multi-relation regularization method. Specifically, we use the relational information 

inherent in the observations and combine it with an ℓ2,1-norm within a least square regression 

framework. The rationale for the proposed multi-relation regularization method is as 

follows: (1) If some features are related to each other, then the same or similar relation is 

expected to be preserved between the respective weight coefficients in a least square 

regression model. (2) Due to the algebraic operation in least square regression, i.e., matrix 

multiplication, the weight coefficients are linked to the response variables via regressors, 

i.e., feature vectors in our work. Therefore, it is natural to impose the relation between a pair 

of weight coefficients to be similar to the relation between the corresponding pair of target 

response variables. (3) As considered in many manifold learning methods [1,6,17], if a pair 

of samples are similar to each other, then their respective response values should be also 

similar to each other. By imposing these three relational characteristics along with the ℓ2,1-

norm on the weight coefficients, we formulate a new objective function. We then select 

features to build classification and regression models for clinical label identification and 

clinical scores (Alzheimer’s Disease Assessment Scale-Cognitive subscale: ADAS-Cog, 

Mini-Mental State Examination: MMSE) prediction, respectively.

2 Method

By taking the features as regressors and the concatenation of clinical scores (e.g., ADAS-

Cog, MMSE) and a class label as responses, we apply the proposed method to select features 

that are jointly used to represent clinical scores and class labels. Based on the selected 

features, we finally build clinical scores regression models and a clinical label identification 

model with Support Vector Regression (SVR) and Support Vector Classification (SVC), 

respectively.

Let X ∈ ℝn × d and Y ∈ ℝn × c denote d neuroimaging features and c clinical response values 

of n subjects or samples, respectively. In this work, we assume that the response values of 
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clinical scores and a clinical label can be represented by a linear combination of the features. 

Then, the problems of regressing clinical scores and identifying a class label can be 

formulated by a least square regression model as follows:

ℒ W = Y − XW F
2 = Y − Y F

2 =
i = 1

n

j = 1

c
yi j − yi j

2
(1)

where ‖ ⋅ ‖F denotes a Frobenius norm, W ∈ ℝd × c is a weight coefficient matrix, and 

Y = XW. While the least square regression model has been successfully used in many fields, 

it is well known that the solution is generally overfitted to the training samples in its original 

form. To overcome the overfitting problem and to find a more generalized solution, a variety 

of its variants using different types of regularizations have been proposed [5], which can be 

mathematically simplified as follows:

min
W

ℒ W + ℛ W (2)

where ℛ W  denotes a set of regularization terms.

From a machine learning point of view, a well-defined regularization term helps find a 

generalized solution to the objective function, and thus result in a better performance for the 

final goal. In this paper, we devise novel regularization terms that effectively utilize various 

pieces of information inherent in the observations. Note that since, in this work, we extract 

features from the parcellated brain areas or Regions-Of-Interest (ROIs), which are 

structurally or functionally related to each other, it is natural to assume that there exist 

relations among features. Meanwhile, if two features are highly related to each other, then it 

is reasonable to have the respective weight coefficients also related. However, to the best of 

our knowledge, none of the previous regression methods in the literature considered and 

guaranteed this characteristic in their solutions. To this end, we devise a new regularization 

term with the claim that, if some features are related to each other, the same or the similar 

relation is expected to be preserved between the respective weight coefficients. To utilize 

this ‘feature-feature’ relation, we impose the relation between columns in X to be reflected 

in the relation between the corresponding rows in W, by defining the following 

regularization term:

ℛ1 W = 1
2 i, j

d
mi j wi − w j

2
2

(3)

where mij denotes an element in the feature similarity matrix M = mi j ∈ ℝd × d that encodes 

the relation between features in the samples. Throughout this paper, we use a radial basis 

function kernel to measure the similarity between vectors.

Meanwhile, given a feature vector xi, in our joint regression and classification framework, 

we use a different set of weight coefficients to regress the elements in the response vector yi. 

In other words, the elements of each column in W are linked to the elements of each column 

in Y via feature vectors. By taking this mathematical property into account, we further 
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impose the relation between column vectors in W to be similar to the relation between the 

respective target response variables (i.e., respective column vectors) in Y, which we call as 

‘response-response’ relation:

ℛ2 W = 1
2 i, j

c
gi j wi − w j 2

2 (4)

where gij denotes an element in the matrix G = gi j ∈ ℝc × c that represents the similarity 

between every pair of target response variables (i.e., every pair of column vectors in Y). Due 

to the algebraic operation in the least square regression, i.e., matrix multiplication, the 

weight coefficients are linked to the response variables via regressors, i.e., feature vectors in 

our work. Therefore, it is meaningful to impose the relation between a pair of weight 

coefficients to be similar to the relation between the respective pair of target response 

variables.

We can also utilize the relational information between samples, called as ‘sample-sample’ 

relation. That is, if samples are similar to each other, then their respective response values 

should be also similar to each other. In this regard, we define a regularization term as 

follows:

ℛ3 W = 1
2 i, j

n
si j yi − y j

2
2 = 1

2 i, j

n
si j xiW − x jW 2

2
(5)

where sij is an element in the matrix S = si j ∈ ℝn × n that measures the similarity between 

every pair of samples. We should note that this kind of sample-sample relation has been 

successfully used in many manifold learning methods [1,6]. We argue that the simultaneous 

consideration of these newly devised regularization terms, i.e., feature-feature relation, 

sample-sample relation, and response-response relation, can effectively reflect the relational 

information inherent in observations in finding an optimal solution.

Regarding feature selection, we believe that due to the underlying brain mechanisms that 

determine clinical scores or a clinical label, i.e., response variables, if one feature plays a 

role in predicting one response variable, then it also devotes to the prediction of the other 

response variables. So, we further impose to use the same features across the tasks of 

clinical scores and clinical label prediction. Mathematically, this can be formulated by a ℓ2,1-

norm on W, i.e., W 2, 1.

Therefore, our final objective function is formulated as follows:

min
W

ℒ W + α1ℛ1 W + α2ℛ2 W + α3ℛ3 W + λ W 2, 1 (6)

where α1, α2, α3, and λ denote control parameters of the respective regularization terms, 

respectively. This objective function can be efficiently optimized using the framework in 

[22].
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It is noteworthy that unlike the previous regularization methods such as local linear 

embedding [10], locality preserving projection [6], predictive space aggregated regression 

[2], and high-order graph matching [9] that focused on the sample similarities by imposing 

nearby samples to be still nearby in the transformed space, the proposed method utilizes 

richer information inherent in the observations. Thus, it is expected that the proposed 

method can find a generalized solution, which can be robust to noise or outliers.

3 Experimental Analysis

We compared the performance of the proposed method and the state-of-the-art methods on a 

subset of the ADNI dataset. Our dataset has 202 subjects including 51 AD, 52 NC, and 99 

MCI. Moreover, 99 MCI contains 43 MCI-C and 56 MCI-NC.

3.1 Image Processing and Feature Extraction

We conducted image pre-processing for MRI and PET images by the sequential application 

of spatial distortion, skull-stripping, and removal of cerebellum. Then, for structural MRI 

images, we segmented them into three different tissues: gray matter (GM), white matter 

(WM), and CSF. By warping Kabani et al. ‘s atlas [8] into a subject’s MRI image, we further 

dissected the GM tissue into 93 ROIs by HAMMER[11]. We then regarded the volume of 

the GM tissue of each ROI as a feature. We aligned each PET image to its corresponding 

MRI image, and then took the average intensity of each ROI as a feature. Thus, we extracted 

93 features from MR and PET images, respectively.

3.2. Experimental Setting

We considered three binary classification problems: AD vs. NC, MCI vs. NC, and MCI-C 

vs. MCI-NC. For MCI vs. NC, both MCI-C and MCI-NC were labeled as MCI. For each set 

of experiments, we used 93 MRI features or 93 PET features as regressors, and 2 clinical 

scores along with 1 class label as responses in the least square regres-sion model. We 

employed the metrics of Correlation Coefficient (CC) and Root Mean Squared Error 

(RMSE) between the target clinical scores and the predicted ones in regression, and also the 

metrics of classification ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and Area 

Under the receiver operating characteristic Curve (AUC) in classification.

To validate the effectiveness of the proposed method, we considered rigorous experimental 

conditions: (1) In order to show the validity of the feature selection strategy, we performed 

the tasks of regression and classification without precedent feature selection, and considered 

them as a baseline method. Hereafter, we use the suffix “N” to indicate that no feature 

selection was involved in. For example, by MRI-N, we mean that either the classification or 

regression was performed using the full MRI features. (2) One of the main arguments in our 

work is to select features that can be jointly used for both regression and classification. To 

this end, we compare the multi-task based method with a single-task based method, in which 

the feature selection was carried out for regression and classification independently. In the 

following, the suffix “S” manifests a single-task based method. For example, MRI-S 

represents single-task based feature selection on MRI features. (3) We compare with two 

state-of-the-art methods: High-Order Graph Matching (HOGM) [9] and Multi-Modal Multi-
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Task (M3T) [15]. The former used a sample-sample relation along with an ℓ1-norm in an 

optimization of single-task learning. The latter used multi-task learning with an ℓ2,1-norm 

only to select a common set of features for the tasks of regression and classification.

3.3 Classification Results

Table 1 shows the classification performances of all the competing methods. From these 

results, we can draw three conclusions. First, it is important to conduct feature selection on 

the high-dimensional features before training a classifier since the baseline methods with no 

feature selection, i.e., MRI-N, and PET-N, reported the worst performances. Second, it is 

beneficial to use joint regression and classification framework, i.e., multi-task learning, for 

feature selection. As shown in Table 1, M3T and our method, which utilized the multi-task 

learning, achieved better classification performances than the single-task based method. 

Specifically, the proposed method showed the superiority to the single-task based method, 

i.e., MRI-S and PET-S, improving the accuracies by 2.5% (AD vs. NC), 3.0% (MCI vs. NC), 

and 7.3% (MCI-C vs. MCI-NC) with MRI, and by 3.9% (AD vs. NC), 10.2% (MCI vs. NC), 

and 9.0% (MCI-C vs. MCI-NC) with PET, respectively. Lastly, based on the fact that the 

best performances over the three binary classifications were all obtained by our method, we 

can say that the proposed regularization terms were effective to find class-discriminative 

features. It is worth noting that compared to the state-of-the-art methods, the accuracy 

enhancements by our method were 5% (vs. HOGM) and 4.7% (vs. M3T) with MRI, and 

4.6% (vs. HOGM) and 4.2% (vs. M3T) with PET for MCI-C vs. MCI-NC classification, 

which is the most important for early diagnosis and treatment.

3.4 Regression Results

Regarding the prediction of two clinical scores of MMSE and ADAS-Cog, we summarized 

the results in Table 2, we can see that, similar to the classification results, the regression 

performance of the methods without feature selection (MRI-N and PET-N) was worse than 

any of the other methods with feature selection. Moreover, our method consistently 

outperformed the competing methods for the cases of different pairs of clinical labels.

In the regression with MRI for AD vs. NC, our method showed the best CCs of 0.669 for 

ADAS-Cog and 0.679 for MMSE, and the best RMSEs of 4.43 for ADAS-Cog and 1.79 for 

MMSE. The next best performances in terms of CCs were obtained by M3T, i.e., 0.649 for 

ADAS-Cog and 0.638 for MMSE, and those in terms of RMSEs were obtained by HOGM, 

i.e., 4.53 for ADAS-Cog and 1.91 for MMSE. In the regression with MRI for MCI vs. NC, 

our method also achieved the best CCs of 0.472 for ADAS-Cog and 0.50 for MMSE, and the 

best RMSEs of 4.23 for ADAS-Cog and 1.62 for MMSE. For the case of MCI-C vs. MCI-

NC with MRI, the proposed method improved the CCs by 0.092 for ADAS-Cog and 0.053 

for MMSE compared to the next best CCs of 0.497 for ADAS-Cog and 0.550 for MMSE by 

M3T. Note that the proposed method with PET also reported the best CCs and RMSEs for 

both ADAS-Cog and MMSE over the three regression problems, i.e., AD vs. NC, MCI vs. 

NC, and MCI-C vs. MCI-NC.
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4 Conclusions

In this work, we proposed a novel feature selection method by devising new regularization 

terms that consider relational information inherent in the observations for joint regression 

and classification in the computer-aided AD diagnosis. From our extensive experiments on 

the ADNI dataset, we found that the utilization of the devised three regularization terms, i.e., 
sample-sample relation, feature-feature relation, and response-response relation, were 

helpful to improve the performances in the problem of joint regression and classification, 

outperforming the state-of-the-art methods.
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Table 1.

Comparison of classification performances (%) of the competing methods

Feature Method
AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

MRI

MRI-N 89.5 82.7 86.3 95.3 68.3 92.6 39.2 82.5 60.3 15.5 92.3 68.7

MRI-S 91.2 85.9 92.5 96.7 76.7 93.3 37.6 83.7 64.5 24.9 95.8 70.6

HOGM 93.4 89.5 92.5 97.1 77.7 95.6 51.4 84.4 66.8 36.7 95.0 72.2

M3T 92.6 87.2 95.9 97.5 78.1 94.5 54.0 83.1 67.1 37.7 92.0 72.5

Proposed 93.7 88.6 97.8 97.6 79.7 94.8 56.9 84.7 71.8 48.0 92.8 81.4

PET

PET-N 86.2 83.5 84.8 94.8 69.0 95.0 30.8 77.9 62.2 21.6 93.1 71.3

PET-S 87.9 85.7 90.9 94.7 73.8 96.5 36.2 78.7 65.1 31.0 95.5 73.5

HOGM 91.7 91.1 92.8 95.6 74.7 96.5 43.2 79.3 66.6 35.5 95.5 72.4

M3T 90.9 90.5 93.1 96.4 77.2 94.5 44.3 80.5 67.0 39.1 93.2 73.1

Proposed 91.8 91.5 93.8 96.9 79.2 97.1 45.3 80.8 71.2 47.4 93.0 77.6
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Table 2.

Comparison of regression performances of the competing methods in terms of Correlation Coefficient (CC) 

and Root Mean Square Error (RMSE)

Feature Method

AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE

CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE

MRI

MRI-N 0.587 4.96 0.520 2.02 0.329 4.48 0.309 1.90 0.420 4.10 0.441 1.51

MRI-S 0.591 4.85 0.566 1.95 0.347 4.27 0.367 1.64 0.426 4.01 0.482 1.44

HOGM 0.625 4.53 0.598 1.91 0.352 4.26 0.371 1.63 0.435 3.94 0.521 1.41

M3T 0.649 4.60 0.638 1.91 0.445 4.27 0.420 1.66 0.497 4.01 0.550 1.41

Proposed 0.669 4.43 0.679 1.79 0.472 4.23 0.500 1.62 0.589 3.83 0.603 1.40

PET

PET-N 0.597 4.86 0.514 2.04 0.333 4.34 0.331 1.70 0.382 4.08 0.452 1.50

PET-S 0.620 4.83 0.593 2.00 0.356 4.26 0.359 1.69 0.437 4.00 0.478 1.48

HOGM 0.600 4.69 0.515 1.99 0.360 4.21 0.368 1.67 0.430 4.03 0.523 1.41

M3T 0.647 4.67 0.593 1.92 0.447 4.24 0.432 1.68 0.520 3.91 0.569 1.45

Proposed 0.671 4.41 0.620 1.90 0.513 4.13 0.485 1.66 0.526 3.87 0.570 1.37
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